If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3a^2+15a=11
We move all terms to the left:
3a^2+15a-(11)=0
a = 3; b = 15; c = -11;
Δ = b2-4ac
Δ = 152-4·3·(-11)
Δ = 357
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{357}}{2*3}=\frac{-15-\sqrt{357}}{6} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{357}}{2*3}=\frac{-15+\sqrt{357}}{6} $
| 4x3+16x2+-8x+3=0 | | F(x)=2x-10+x(5x-7) | | n/1/3=1/2 | | 1/6/n=1/4 | | 3x+x=270 | | 6/n=8 | | A(n)=–5•3^n–1 | | 1/(2x-7)=5 | | 3a^2+15a=12 | | 6t^-13t+6=0 | | 2.9=8+y | | X2+5x-500=0 | | 8x3=54 | | 9p^2+20p+22=0 | | 2x^2+6x-12=x^2+3x-8 | | -3x^2-9x-5=-2x^2-6x-3 | | 2x^2+6x=x^2+3x | | 2x^2-9x=x^2-5x | | -2x^2-12x-8=-x^2-8x-4 | | -3x^2-24x-53=-2x^2-15x-33 | | 3x^2+18x+29=2x^2+11x+19 | | -3x^2+22x-51=-2x^2+13x-31 | | 7/2t-1=1/4t+3 | | -2x^2+4x+16=-x^2+2x+8 | | 2x^2+9x-12=x^2+5x-7 | | 3x^2+3x-4=2x^2+2x-2 | | 3x^2-4=2x^2+2x-2 | | 54=5v+14 | | -3x^2-22x-34=-2x^2-14x-18 | | -3x^2-20x-54=-2x^2-10x-29 | | 2x^2-8x=x^2-5x | | X+3/3-3x-7/5=0 |